On the Diophantine equation q n − 1 q − 1 = y

نویسندگان

  • Amir Khosravi
  • Behrooz Khosravi
چکیده

There exist many results about the Diophantine equation (qn − 1)/(q − 1) = ym, where m ≥ 2 and n ≥ 3. In this paper, we suppose that m = 1, n is an odd integer and q a power of a prime number. Also let y be an integer such that the number of prime divisors of y − 1 is less than or equal to 3. Then we solve completely the Diophantine equation (qn − 1)/(q − 1) = y for infinitely many values of y. This result finds frequent applications in the theory of finite groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE DIOPHANTINE EQUATION xn − 1 x −

We prove that if (x, y, n, q) 6= (18, 7, 3, 3) is a solution of the Diophantine equation (xn−1)/(x−1) = y with q prime, then there exists a prime number p such that p divides x and q divides p − 1. This allows us to solve completely this Diophantine equation for infinitely many values of x. The proofs require several different methods in diophantine approximation together with some heavy comput...

متن کامل

on ”NUMBER THEORY AND MATHEMATICAL PHYSICS” On recent Diophantine results

Diophantus of Alexandria was a greek mathematician, around 200 AD, who studied mathematical problems, mostly geometrical ones, which he reduced to equations in rational integers or rational numbers. He was interested in producing at least one solution. Such equations are now called Diophantine equations. An example is y − x = 1, a solution of which is (x = 2, y = 3). More generally, a Diophanti...

متن کامل

The Nagell–Ljunggren equation via Runge’s method

The Diophantine equation x n−1 x−1 = yq has four known solutions in integers x, y, q and n with |x |, |y|, q > 1 and n > 2. Whilst we expect that there are, in fact, no more solutions, such a result is well beyond current technology. In this paper, we prove that if (x, y, n, q) is a solution to this equation, then n has three or fewer prime divisors, counted with multiplicity. This improves a r...

متن کامل

The Diophantine Equation 8x + py = z2

Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ± 3(mod  8), then the equation 8 (x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod  8), then the equation has only the solutions (p, x, y, z) = (2 (q) - 1, (1/3)(q + 2), 2, 2 (q) + 1), where q is an odd prime with q ≡ 1(mod  3); (iii) if p ≡ 1(mod  8)...

متن کامل

Approximating reals by sums of two rationals

We generalize Dirichlet's diophantine approximation theorem to approximating any real number α by a sum of two rational numbers a 1 q 1 + a 2 q 2 with denominators 1 ≤ q1, q2 ≤ N. This turns out to be related to the congruence equation problem xy ≡ c (mod q) with 1 ≤ x, y ≤ q 1/2+ǫ .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010